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Abstract—In multi-labeled complementary label learning (MLCLL), a complementary label (CL) represents an irrelevant label for an
instance. Utilizing CLs instead of relevant labels as annotations simplifies the annotation process in multi-label learning (MLL) tasks,
underscoring the practicality of the MLCLL problem. However, existing MLCLL approaches mainly focus on scenarios where an
instance is associated with a single CL. This restricts their applicability in situations where annotators provide multiple CLs per
instance. To address this limitation, we propose a novel paradigm called multi-label learning with multiple complementary labels
(ML-MCL), which allows each instance to be associated with multiple CLs simultaneously. Through analyzing the generation process of
multiple CLs, we construct the relationship between relevant labels and CLs. This assists in deriving a tailored risk-consistent estimator
to solve MLCLL with multiple CLs. Theoretically, we establish an estimation error bound for this estimator, with a convergence rate of
O(1/

√
n). Furthermore, we observed that unbounded gradients can be produced in the derived estimator when optimizing with certain

loss functions, which may lead to unstable optimization. To mitigate this issue, we enhance the estimator with a confidence truncation
loss, stabilizing the optimization process. Experimental results confirm the effectiveness of our approach, showing improved learning
stability and performance in MLCLL tasks involving multiple CLs.

Index Terms—Complementary label learning, multi-label learning, risk-consistent estimator, estimation error bound.
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1 INTRODUCTION

Multi-label learning (MLL) aims to learn a multi-labeled
classifier that can assign multiple relevant labels to an
unseen instance simultaneously [1], [2], [3]. However, fully
supervised MLL tasks generally require massive precisely
multi-labeled data, the collection of which is expensive
and laborious [4], [5], [6]. To alleviate this problem, many
researchers turn to study weakly supervised learning, which
enables learning under weak supervision information [7].
At present, various weakly supervised learning frameworks
have been widely studied, including but not limited to, one
positive label learning [8], [9], semi-supervised MLL [10], [11],
positive-unlabeled learning for MLL [12], [13], and partial multi-
label learning (PML) [14], [15].

Here, we explore another weakly supervised learning
scenario termed multi-labeled complementary label learning
(MLCLL) [4], [16]. In MLCLL, each training instance is
associated with a single complementary label (CL), which
specifies an irrelevant label for that instance. The goal of
MLCLL is identical to that of MLL, which is to learn a multi-
labeled classifier capable of assigning a set of relevant labels
to an unseen instance. Obviously, collecting CLs is less la-
borious than collecting multiple precise relevant labels. This
simplifies the annotation process by circumventing complex
semantic labels and the unknown number of relevant labels
in fully supervised MLL [4], [16]. Moreover, the collection
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of CLs avoids the need for annotators to check all relevant
labels for instances individually across the entire label space.
However, the existing MLCLL problem allows only a single
CL for each instance, which significantly restricts its poten-
tial. This constraint provides an opportunity to expand this
paradigm, as in real-world scenarios, annotators may often
provide multiple CLs for an instance, enhancing the richness
of the training data.

Recently, CLs have been applied in the medical do-
main [17], [18]. For example, healthcare professionals fre-
quently encounter patients exhibiting symptoms that could
indicate multiple health conditions. The multi-label nature
of medical diagnoses necessitates the identification of sev-
eral potential diseases simultaneously, which is inherently
challenging. CLs prove valuable in such scenarios by allow-
ing medical experts to confidently exclude certain diseases
based on observed symptoms. By systematically eliminating
less likely conditions (i.e., irrelevant labels serving as CLs),
physicians can more accurately infer the most probable
diagnoses, thereby enhancing the diagnostic process. Be-
yond healthcare, CLs are also useful in e-commerce product
categorization, where annotators may find it easier to ex-
clude irrelevant categories rather than assign all appropriate
ones. In this case, multiple CLs would be more commonly
provided than a single CL [19].

In this paper, we propose a novel paradigm, called
multi-label learning with multiple complementary labels
(ML-MCL), which enables each instance to be associated
with multiple CLs simultaneously. While existing MLCLL
approaches, as discussed in previous studies [4], [16], have
shown promising results on a single CL for an instance,
their efficacy in scenarios involving multiple CLs is yet to
be established. For instance, Gao et al. [16] recovered the
true multi-labeled data distribution from complementary



2

labeled data by assuming that each instance is related to
only a single CL; in [4], a transition matrix for MLCLL
was estimated under the assumption that only a single CL
is available for each instance. These approaches are thus
inherently limited, as they rely on the premise of a single CL
per instance, which restricts their applicability in learning
scenarios where multiple CLs are present.

To address the problem of MLCLL with multiple CLs,
we begin by analyzing the generation process of multiple
CLs for ML-MCL. This analysis not only clarifies the data
distribution but also deepens our understanding of how
complementary labeled instances are generated. This pro-
cess allows us to establish the relationship between relevant
labels and their corresponding CLs, which allows us to
derive a risk-consistent estimator. This estimator guarantees
that the classifier learned from multiple CLs converges to
the optimal one achievable under fully supervised MLL.
Theoretically, we establish an estimation error bound for our
proposed risk estimator and prove its convergence rate. Fur-
thermore, we observe that the risk-consistent estimator with
certain loss functions may result in unbounded gradients,
which causes instability in the training process. To alleviate
this issue, we enhance the risk estimator by minimizing a
confidence truncated loss (CTL) designed specifically in this
paper. This improvement not only benefits gradient updates
but also stabilizes the optimization process. Our experimen-
tal results demonstrate the effectiveness of this approach.
The main contributions of our work can be summarized as
follows:

• We propose a novel paradigm called ML-MCL,
which allows learning with multiple CLs. To ad-
dress this new paradigm, we derive a risk-consistent
estimator by analyzing the generation process of
multiple CLs.

• The risk-consistent estimator ensures that the classi-
fier learned from multiple CLs will converge to the
optimal one in fully supervised MLL. We establish
an estimation error bound for the proposed risk
estimator, with a convergence rate of O(1/

√
n).

• To solve issues related to the unstable learning pro-
cess caused by unbounded gradients, we design CTL
to improve our risk estimator. This improvement
further facilitates gradient updates and stabilizes the
optimization process.

The remaining organization of this paper is as follows.
Section 2 provides a brief review of related work. Sec-
tions 3 and 4 describe the proposed approach and CTL,
respectively. Section 5 presents the experimental results, and
Section 6 concludes the paper.

2 RELATED WORK

In this section, we briefly review related work on ML-MCL,
including MLL, complementary label learning in multi-class
classification, and MLCLL.

2.1 Multi-Label Learning
In fully supervised MLL, each instance is equipped with a
set of relevant labels. The goal is to learn a multi-label classi-
fier that can assign relevant labels to unseen instances. Exist-
ing MLL approaches can be categorized into three research

lines based on the order of label correlations: first-order
approaches [20], second-order approaches [21], [22], and
high-order approaches [23]. First-order approaches solve
MLL problems by decomposing them into a series of binary
classification tasks [20], which disregard the relationship
among labels. However, researchers have found that label
correlations exist in multi-labeled data [1], [2]. Therefore,
many studies have turned to consider label correlations to
solve MLL problems. Second-order approaches focus on the
correlations between pairs of labels [21], [22]. These meth-
ods typically convert MLL problems into bipartite ranking
problems by ensuring that relevant labels are ranked higher
than irrelevant ones [24], [25]. On the other hand, high-
order approaches explore more complex relationships than
second-order ones, exploiting label correlations among label
subset or all labels in the label space [26], [27], [28]. Although
high-order approaches can model stronger label correla-
tions, they incur higher computational costs compared to
first and second-order approaches [29]. In addition, ML-
MCL is more challenging than MLL tasks because it lacks
access to relevant labels. As a result, conventional MLL
approaches struggle to handle this paradigm effectively.

2.2 Complementary Label Learning in Multi-Class Clas-
sification
In multi-class classification, each instance is equipped with
a relevant label. Similar to MLL problems, collecting high-
quality labeled data is hard in multi-class learning [30]. To
address this issue, complementary label learning was first
proposed as a solution to the difficulty of obtaining precisely
labeled data in multi-class learning [31]. In their pioneering
work, Ishida et al. [31] derived an unbiased risk estimator
under a uniform assumption and reformulated one-versus-
all and pairwise comparison loss functions to address the
problem. To mitigate the limitation of being constrained to
specific loss functions, Ishida et al. [32] proposed a new
framework that can accommodate arbitrary loss functions
and models. For enhanced practicality, biased CLs have
been explored by estimating a transition matrix [33], [34].
However, approaches based on transition matrices require
additional conditions, such as the availability of anchor
instances, limiting their suitability for real-world scenarios.
To ease dependence on an estimated transition matrix, Gao
et al. [35] directly modeled the probabilities of CLs using
the model’s outputs. The effectiveness of these approaches
relies on the assumption that each instance has only a single
CL. Consequently, they may encounter challenges in solving
the problem setting of ML-MCL, as the number of relevant
labels per instance in MLL is unknown and can vary across
instances.

2.3 Multi-Labeled Complementary Label Learning
To alleviate the challenges of collecting precisely multi-
labeled data in MLL, the problem of MLCLL has at-
tracted many researchers to investigate. Existing MLCLL
approaches mainly focus on scenarios where each instance
is equipped with only a single CL [4], [16]. For example, Gao
et al. [16] recovered relevant labels from complementary
labeled data based on a uniform generation assumption,
where each instance is annotated with a single CL. They
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also designed a gradient-descent friendly (GDF) loss function
to boost the model’s performance. In another study [4], a
transition matrix-based approach was proposed, which re-
constructed relevant labels by estimating a transition matrix
under the assumption that each instance is associated with a
single CL. However, in real-world scenarios, annotators may
often provide multiple CLs for an instance. This limitation,
where each instance is assumed to have only a single
CL, heavily restricts the applicability of existing MLCLL
approaches in cases with multiple CLs. Existing MLCLL
approaches primarily focus on single CL scenarios and do
not fully address the complex dynamics of multiple CLs.
Therefore, to overcome this limitation, we propose a risk-
consistent estimator capable of ML-MCL.

3 LEARNING WITH MULTIPLE COMPLEMENTARY
LABELS

In this section, we first introduce the notations and problem
setting. By analyzing the generation process of multiple CLs,
we establish the relationship between relevant labels and
CLs. This relationship allows us to recover the relevant label
distribution from complementary labeled data and to derive
a risk-consistent estimator, along with its estimation error
bound.

3.1 Preliminaries
Let X ⊂ Rd be the feature space with d dimensions, and
Y = {1, 2, 3, . . . ,K} be the label space with K possible
labels, where K > 2. In fully supervised MLL, we define
x as an instance, and Y as the set of relevant labels for
the instance x. Here, we assume that (x, Y ) ∈ (X ,Y) is
independently drawn from an unknown joint probability
distribution p(x, Y ). The goal of MLL is to learn a classifier
f : X 7→ [0, 1]K that can assign predictions for unseen
instances. The classifier f is obtained by minimizing the
following expected classification risk:

R(f) = Ep(x,Y )[L(f(x), Y )], (1)

where L(f(x), Y ) refers to MLL loss functions, defined
as L(f(x), Y ) =

∑K
y=1,y∈Y `y(x) +

∑K
y=1,y /∈Y

¯̀
y(x). We

define fy(·) as the y-th prediction of f(·), which is used
to estimate p(y = 1|x). `y(x) and ¯̀

y(x) calculate the loss
of fy(x) when y belongs to the relevant and irrelevant
labels, respectively. Specifically, when L(f(x), Y ) refers to
Binary Cross Entropy (BCE) loss, `y(x) = − log(fy(x)) and
¯̀
y(x) = − log(1 − fy(x)). Additionally, `y(x) = 1 − fy(x)

and ¯̀
y(x) = fy(x) when mean absolute error (MAE) loss is

used byL(f(x), Y ). Note that an approach is risk-consistent
if its learned classification risk estimator equals R(f) given
the same classifier f [8], [36], [37].

In this paper, we study the problem of learning with
multiple CLs in MLCLL, namely ML-MCL. Given a com-
plementary labeled dataset D̄ = {(xi, Ȳi)}ni=1 consisting of
n instances, each independently sampled from an unknown
joint probability distribution p̄(x, Ȳ ), where Ȳi ⊆ Y − Yi
represents a set of CLs for an instance xi ∈ X . Specifically,
Ȳi is a subset chosen from the remaining labels after re-
moving the relevant label set Yi from the label space Y .
It is important to note that Ȳi cannot be an empty set nor

the full label set, which ensures the validity of our problem
setting. Thus, Ȳ ∈ Ȳ , where Ȳ = {2Y − ∅ − Y}. The goal of
ML-MCL is the same as in MLL, which is to learn a multi-
labeled classifier f : X 7→ [0, 1]K . This task extends the
existing MLCLL framework from the scenario of a single CL
to multiple CLs, thereby enhancing its applicability to real-
world situations. However, ML-MCL introduces additional
challenges due to the uncertain and variable number of CLs
across instances. Due to the complex dynamics of multiple
CLs, dealing with multiple CLs makes this framework more
challenging than the single CL case. In the next subsection,
we will analyze the generation process of multiple CLs to
help construct the relationship between multiple CLs and
relevant labels, which will further aid in deriving a risk-
consistent estimator.

3.2 Data Generation Process

Without any additional knowledge, inferring the generation
process of multiple CLs is difficult as the number of relevant
labels and CLs is uncertain. Motivated by Feng et al. [19],
we assume that the generation process relies on the size
of the set of multiple CLs. Let’s denote the size of the
complementary label set as a random variable s, where s
follows a distribution p(s). Under this umbrella, we assume
each training instance (xi, Ȳi) is drawn from p̄(x, Ȳ ), which
is defined as:

p̄(x, Ȳ ) =
K−1∑
j=1

p(s = j)p̄(x, Ȳ |s = j), (2)

where s 6= 0,K and p̄(x, Ȳ |s = j) :=
∑

Y ∈Y,Y ∩Ȳ=∅

1
Cj

K−|Y |
p(x, Y ), if |Ȳ | = j, j ≤ K − |Y |

0, otherwise
.

Obviously, this distribution will simplify to the MLCLL
problem with a single CL when p(s = 1) = 1 [16]. Eq. (2)
specifies the probability of each set of multiple CLs being
uniformly sampled, given Y . Additionally, Eq. (2) reveals
the relationship between relevant labels and multiple CLs
with certain constraints. Specifically, the selection of Ȳi is
influenced by Yi, ensuring that Yi ∩ Ȳi = ∅. This modeling
choice explicitly prevents overlap between Ȳi and Yi. In
Theorem 1, we will show the validity of our assumed prob-
ability distribution p̄(x, Ȳ ) by establishing the necessary
conditions that ensure p̄(x, Ȳ ) constitutes a valid probabil-
ity distribution. This validation further guarantees that the
overall probability model is well-defined.

Theorem 1. p̄(x, Ȳ ) is a valid probability distribution, which
satisfies non-negativity and Ep̄(x,Ȳ )[1] = 1.

The proof is provided in Appendix A. Here, we present
a real-world motivation for the assumed data distribution.
In real-world data collection, we can approximate Eq. (2)
by first randomly sampling the size s from p(s) and then
uniformly selecting s labels from the entire label space to
form a candidate set. If annotators confirm that none of these
labels are correct for the given instance, this set is treated as a
set of multiple CLs, aligning with the distribution described
in Eq. (2). For example, in medical diagnostics, a physician
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might be presented with a small subset of potential diag-
noses. If the physician determines that none of these apply
to the patient, the subset serves as a complementary label
set. This approach not only approximates the assumptions
but also alleviates the annotation burden, as it is generally
easier for experts to exclude incorrect options rather than
identify all relevant ones.

Furthermore, Eq. (2) describes the generation process
of multiple CLs from p(x, Y ), while directly recovering
relevant labels from multiple CLs based on Eq. (2) is not
feasible since the multi-labeled data is unavailable at here.
Hence, we proceed to derive a risk-consistent estimator by
investigating Lemma 2.

Lemma 2. Let Ȳj = {Ȳ |Ȳ ∈ Ȳ, |Ȳ | = j}. With Eq. (2),

p(x, Y ) =
1

2K − 2

∑
Ȳ ∈Ȳj ,Y ∩Ȳ=∅

p̄(x, Ȳ |s = j). (3)

The proof is stated in Appendix B. This lemma constructs
the MLL probability distribution from the complementary
labeled data.

3.3 The Risk-Consistent Estimator
A risk-consistent estimator allows the evaluation of the
classification risk of fully supervised MLL using data that is
only associated with multiple CLs. Based on Lemma 2, the
following theorem shows a risk-consistent estimator that is
equivalent to Eq. (1) when given the same classifier.

Theorem 3. Under Lemma 2, R(f) = R̄(f) based on the
definitions of p̄(x, Ȳ ) and R(f). R̄(f) is expressed as:

R̄(f) =
K−1∑
j=1

p(s = j)R̄j(f), (4)

where R̄j(f) = Ep̄(x,Ȳ |s=j)
[
L̄j(f(x), Ȳ )

]
and

L̄j(f(x), Ȳ ) =
2K−j−1

2K − 2

K∑
y=1,y /∈Ȳ

`y(x)+

2K−j−1 − 1

2K − 2

K∑
y=1,y /∈Ȳ

¯̀
y(x) +

2K−j − 1

2K − 2

K∑
y=1,y∈Ȳ

¯̀
y(x).

The proof is provided in Appendix C. Theorem 3 shows
that the fully supervised classification risk can be estimated
by the risk-consistent estimator R̄(f) with the correspond-
ing loss using complementary data. Moreover, it ensures
that the learned classifier in R̄(f) will converge to R(f).
Since the probability distribution p̄(x, Ȳ ) is generally un-
known even with the complementary labeled dataset, the
expected risk R̄(f) is usually approximated by the empirical
risk R̄n(f), i.e.,

R̄n(f) =
K−1∑
j=1

p(s = j)

nj

nj∑
i=1

L̄j(f(xi), Ȳi)

=
1

n

n∑
i=1

L̄(f(xi), Ȳi), (5)

where L̄(f(xi), Ȳi) =
{

2K−|Ȳi|−1
∑K
y=1,y /∈Ȳ `y(xi)+

(2K−|Ȳi|−1 − 1)
∑K
y=1,y /∈Ȳ

¯̀
y(xi) + (2K−|Ȳi| − 1)

∑K
y=1,y∈Ȳ

¯̀
y(xi)

}
/(2K − 2). We can empirically

approximate p(s = j) by nj/n, where nj refers to the
number of instances in D̄ whose size of CLs is j.

3.4 Estimation Error Bound
We establish an estimation error bound for our pro-
posed approach based on Rademacher Complexity [38]
to verify the convergence rate. Let F be the hypothe-
sis class, and Gy = {g : x 7→ fy(x)|f ∈ F} be
the functional space for the label y ∈ Y . Rn(Gy) indi-
cates Rademacher Complexity of Gy , which is defined as
Rn(Gy) = Ex,σ

[
supg∈Gy

1
n

∑n
i=1 g(xi)

]
. Assuming fn =

arg minf∈F R̄n(f) is the empirical risk minimizer, and f∗ =
arg minf∈F R(f) is the true risk minimizer, we present the
following theorem.

Theorem 4. Let Mj = supx∈X ,f∈F L̄j(f(x), Ȳ ). For any y ∈
Y , assuming `y(x) and ¯̀

y(x) are ρ+-Lipschitz and ρ−-Lipschitz
with respective to f(x), respectively. For any δ > 0, with a
probability at least 1− δ,

R(fn)−R(f∗) ≤ (6)
K−1∑
j=1

p(s = j)

4
√

2KCj
K∑
y=1

Rnj (Gy) +Mj

√
log 2/δ

2nj

 ,

where Cj = 2K−j−1

2K−2 ρ+ + 3·2K−j−1−2
2K−2 ρ− for all j ∈

{1, 2, . . . ,K − 1}.
The proof is provided in Appendix D. Theorem 4 demon-

strates that the proposed risk-consistent estimator possesses
an estimation error bound with a convergence rate of
O(1/

√
n). It further indicates that the gap between R(fn)

and R(f∗) is close to 0 as n → ∞, which signifies the
convergence of the empirical minimizer to the true risk
minimizer. Notably, the distribution shown in Eq. (2) will
be simplified to [16] when the number of CLs per instance
is |Ȳ | = 1. Consequently, our estimator naturally reduces to
the form proposed in [16], and our estimation error bound
aligns with that of [16], indicating that the single-CL setting
is a special case of our generalized framework. While our
data generation assumptions are inspired by [19], since [19]
does not explicitly provide a general framework for MLL,
its estimator and estimation error bound cannot be directly
extended to our setting in the same manner as [16].

4 CONFIDENCE TRUNCATED LOSS

As discussed earlier, we derive a risk-consistent estima-
tor that can accommodate arbitrary loss functions in MLL
according to the generation process of multiple CLs. This
naturally raises two questions:

1) What impact will different loss functions have on
the risk-consistent estimator?

2) Which type of loss function is most beneficial for
optimizing our risk-consistent estimator?

In this section, we proceed by examining several MLL
loss functions, including the BCE loss and MAE loss, to
investigate their impacts on our risk estimator from the
perspective of gradients. Building on this analysis, we will
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explore the loss functions that enhance the optimization of
the risk-consistent estimator.

Next, we explore the situation of the BCE loss to the
risk-consistent estimator by introducing the BCE loss into
L̄(f(x), Ȳ ). We denote this as L̄BCE(f(x), Ȳ ). which is
defined as:

L̄BCE(f(x), Ȳ ) = −2K−|Ȳ |−1

2K − 2

K∑
y=1,y /∈Ȳ

log(fy(x)) (7)

− 2K−|Ȳ |−1 − 1

2K − 2

K∑
y=1,y /∈Ȳ

log(1− fy(x))

− 2K−|Ȳ | − 1

2K − 2

K∑
y=1,y∈Ȳ

log(1− fy(x)).

The gradient of L̄BCE with respect to θ, the learnable
parameters for fy(x), is given by:

∂L̄BCE

∂θ
=

{
(w− − w+)5θ fy(x;θ), if y /∈ Ȳ
2K−|Ȳ |−1

2K−2
5θfy(x;θ)
1−fy(x;θ) , if y ∈ Ȳ , (8)

where w+ = 2K−|Ȳ |−1/[(2K − 2)fy(x;θ)] and w− =
(2K−|Ȳ |−1 − 1)/[(2K − 2)(1 − fy(x;θ))]. The calculation
of Eq. (8) can be divided into two parts: CLs (Ȳ ) and
non-CLs (Y − Ȳ ). For CLs, gradient descent benefits when
the prediction fy(x;θ) is close to zero, especially when
the label y belongs exclusively to Ȳ . However, for non-
CLs, the situation can lead to infinite values for w− or
w+, regardless of how close the label prediction is to the
groundtruth (0 or 1). For example, imagine there is another
label yo that is irrelevant to x and belong to non-CLs,
such that its prediction fyo(x;θ) will be close to zero. If
fyo(x;θ) = 0 or close to zero, w+ in Eq. (8) becomes
infinite, leading to an unbounded gradient even if fyo is
close to the groundtruth. Conversely, if a label yr , a relevant
label of x, has a groundtruth prediction close to one, it will
result in an infinite w− and thus an infinite gradient. These
examples illustrate that infinite values of w+ or w− can
cause unbounded gradients when using the risk-consistent
estimator, potentially resulting in unstable optimization.

Similarly, we start by exploring the impact of MAE loss
on the risk estimator through analyzing the gradient of
L̄MAE with respect to θ. The MAE loss used to L̄(f(x), Ȳ )
is represented by Eq. (9):

L̄MAE(f(x), Ȳ ) =
2K−|Ȳ |−1

2K − 2

K∑
y=1,y /∈Ȳ

(1− fy(x))+ (9)

2K−|Ȳ |−1 − 1

2K − 2

K∑
y=1,y /∈Ȳ

fy(x) +
2K−|Ȳ | − 1

2K − 2

K∑
y=1,y∈Ȳ

fy(x),

where the gradient with respect to θ is given by:

∂L̄MAE

∂θ
=

{
− 1

2K−2 5θ fy(x;θ), if y /∈ Ȳ
2K−|Ȳ |−1

2K−2 5θ fy(x;θ), if y ∈ Ȳ
. (10)

Differing from L̄BCE, L̄MAE eliminates the impact of
the prediction of fy(x;θ) on its gradient and prevents an
unbounded situation. Comparing the gradients of these two
loss functions, L̄MAE treats each example equally, while
L̄BCE implicitly assigns more weight to difficult examples

to expedite convergence [19]. This indicates that L̄MAE

may facilitate stable optimization of our risk estimator but
converge at a slower rate [39]. To balance convergence rate
and stability, we improve L̄MAE by proposing an upper-
bound surrogate loss function L̄′(x, Ȳ ), which is defined as:

L̄′(x, Ȳ ) = −
K∑

y=1,y∈Ȳ

e21−|Ȳ |
log(1− fy(x)) (11)

−
K∑

y=1,y /∈Ȳ

e−2−|Ȳ | {log(fy(x)) + log(1− fy(x))} .

The proof is presented in Appendix E. The gradient of L̄′
with respect to θ is given by:

∂L̄′
∂θ

=

( e−2−|Ȳ |

1−fy(x;θ) − e−2−|Ȳ |

fy(x;θ) )5θ fy(x;θ), if y /∈ Ȳ
e21−|Ȳ | 1

1−fy(x;θ) 5θ fy(x;θ), if y ∈ Ȳ
.

(12)

Compared to L̄MAE, Eq. (12) clearly verifies that op-
timizing the upper-bound loss function L̄′ improves the
convergence rate by implicitly assigning more weight to
difficult examples. However, similar to L̄BCE, it is still
sensitive to the prediction of fy(x;θ) on non-CLs. Whether
fy(x;θ) is close to 0 or 1 for non-CLs, this can lead to
either infinitely small or infinitely large gradients, resulting
in an unstable learning process and hindering convergence.
Hence, the model’s predictions on non-CLs must maintain
a lower confidence to prevent unbounded gradients when
using L̄′. In fact, a model benefits from higher confidence in
its predictions. For example, if a label y /∈ Ȳ is relevant to x,
the prediction of fy(x;θ) should be close to 1; conversely,
if it’s irrelevant, fy(x;θ) → 0. Unfortunately, the model
trained with L̄′ in Eq. (11) cannot assign high-confidence
predictions for non-CLs, as doing so would risk infinite
gradients, thereby making training unstable.

Previous work addresses the issue by assigning higher
predictions to any label belonging to non-CLs as relevant
labels [16]. However, this approach ignores the fact that
non-CLs consist of both relevant and irrelevant labels, which
means it does not sufficiently handle the irrelevant labels. As
observed in the part of Eq. (12) that calculates the gradients
for non-CLs, e−2−|Ȳ |/(1− fy(x;θ))→∞ when the predic-
tions for non-CLs are close to 1. In fact, this factor assists
gradient descent by encouraging the prediction of labels
in non-CLs as irrelevant. Motivated by this observation,
we propose a loss function called confidence truncated loss
(CTL). By introducing a confidence truncation threshold,
CTL prevents labels with high prediction confidence from
computing e−2−|Ȳ |/(1 − fy(x;θ)), helping to alleviate the
issue of unbounded gradients. The CTL is defined as:

L̄CTL(x, Ȳ ) = −
K∑

y=1,y∈Ȳ

e21−|Ȳ |
log(1− fy(x)) (13)

−
K∑

y=1,y /∈Ȳ

e−2−|Ȳ | {log(fy(x)) + εy,λ log(1− fy(x))} ,

where εy,λ = I(fy(x) ≤ λ), with I(·) denoting the indicator
function. The threshold λ ∈ [0, 1] is used to truncate high-
confidence predictions. This prevents Eq. (13) from comput-
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Algorithm 1: Multiple CLs in MLCLL with CTL
Input:
D̄: the multiple-complementary-label training set;
E: the number of epochs;
λ: the threshold;
A: an external stochastic optimization algorithm;
Output:
θ: model parameter for f(x;θ);

1 for epoch in E do
2 Let φ be the risk, φ = 1

n

∑n
i=1 L̄CTL(xi, Ȳi);

3 Set gradient −5θ φ;
4 Update θ by A;
5 end

ing predictions close to 1 in log(1 − fy(x)) for non-CLs,
thereby avoiding infinite gradients and maintaining a stable
learning process. The overall procedure of the proposed
approach is shown in Algorithm 1.

5 EXPERIMENTS

In this section, we evaluate the performance of CTL and
the risk-consistent estimator with various loss functions.
We adopt four common MLL criteria, including one er-
ror, coverage, ranking loss, and average precision, to evalu-
ate the approaches’ performance. A higher average preci-
sion value signifies superior performance, while smaller
values for the other criteria indicate better performance.
Our experiments are implemented using PyTorch [40] and
NVIDIA RTX 3090 Ti. The code of this paper is available at
https://github.com/gaoyi439/CTL.

5.1 Experimental Settings

Datasets & Pre-processing. We conduct experiments on
seven MLL datasets1. Following prior work [4], [16], [41], we
remove rare labels and their corresponding instances from
datasets with more than 100 labels, and keep label spaces
under 15. To generate multiple CLs, we first instantiate
p(s) = CsK/(2

K − 2), where ∀s ∈ {1, 2, . . . ,K − 1}, p(s)
denotes the ratio of the number of label sets whose size
is s to the number of all possible label sets. Next, for
each instance x, we randomly sample s from p(s), and
then uniformly sample a complementary label set Ȳ with
size s. Characteristics of each dataset are described through
various statistics, including the number of features dim(S),
the number of instances |S|, the number of possible labels
L(S), the average number of relevant labels per instance
LCard(S), and the number of CLs per instance avg.#CLs.
The details are provided in Table 1.

Comparison Approaches. We adopt a MLL approach
called CCMN [42] as a baseline, implemented by treat-
ing non-CLs (Y − Ȳ ) as relevant labels. As a comparison
approach, we employ a PML approach, fpml [43], whose
learning relies on treating non-CLs as candidate labels. L-
UW [35] belongs to complementary label learning in a multi-
class classification scenario, where we respectively use the

1. Publicly available at https://mulan.sourceforge.net/datasets-
mlc.html

TABLE 1
Characteristics of datasets.

Datasets dim(S) |S| L(S) LCard(S) avg.#CLs

Corel16k 500 11153 153 1.77 7.48
tmc2007 981 28596 22 2.16 10.98
rcv1-s2 944 5252 101 1.67 7.44
rcv1-s3 944 5410 101 1.61 7.49
rcv1-s4 944 5761 101 1.48 7.55
scene 294 2407 6 1.07 2.96
VOC2007 3×448×448 9963 20 1.46 10.04

Sigmoid layer and BCE loss to replace the Softmax layer
and cross-entropy loss to make L-UW adapt to the problem
setting of ML-MCL. Additionally, we compare with two
MLCLL losses: GDF and MAE [16]. To verify the feasibility
of our analysis in Section 4, we use BCE and MAE losses
for our risk-consistent estimator, i.e. L̄BCE and L̄MAE, as
baselines.

Setup. We employ SGD with a momentum of 0.9 for op-
timization, and λ = 0.3. The batch size and training epochs
are set to 256 and 200, respectively. We set weight decay as
10−3. The learning rate is chosen from {10−1, 10−2, 10−3},
where the learning rate is reduced by a factor of 0.1 at
100-th and 150-th epochs [44]. Since the VOC2007 dataset
comprises raw color images, we adopt an 18-layer ResNet
as the predictive model, while the remaining datasets use a
linear model for classification. We evaluate approaches over
5 trials for the VOC2007 dataset, while the other datasets
undergo ten-fold cross-validation. Note that we apply the
same model and hyper-parameters for all approaches except
for fpml, since these approaches are implemented using
neural networks. Here, the training data only involves CLs,
while the test data are labeled with the sets of relevant
labels to evaluate the performance of approaches. We report
results as the mean and standard deviation (std) of four
criteria, where ↓ / ↑ indicates that smaller/larger values
of criteria are better performance.

5.2 Experimental Results
Results. Table 2 reports empirical results of four criteria
across 7 datasets, where fpml is denoted as “-” in the
VOC2007 dataset since fpml cannot handle raw images in
the VOC2007 dataset. In Table 2, CTL achieves compara-
ble performance against all baselines across most datasets,
which demonstrates the effectiveness of the proposed CTL
approach in the ML-MCL scenario. Notably, CTL outper-
forms CCMN and fpml across all datasets for four criteria,
which proves its suitability for learning with multiple CLs
over MLL or PML approaches. Compared to L-UW, the
average precision of CTL on the scene dataset is 0.354 higher
than that of L-UW. This performance gap is attributed to
the reliance of complementary label learning approaches
on the presence of one relevant label per instance in a
multi-class scenario. Additionally, CTL is superior to ML-
CLL approaches on most datasets, which suggests that its
design, considering the number of CLs per instance, is more
effective than existing MLCLL approaches that focus on
identifying labels belonging to non-CLs or CLs during the
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TABLE 2
Experimental results (mean±std) on 7 datasets. The best performance of each dataset is shown in boldface, where •/◦ indicates whether CTL is

superior/inferior to baselines with pairwise t-test (at 0.05 significance level).

Approaches CCMN fpml L-UW GDF MAE L̄BCE L̄MAE CTL

One Error↓

Corel16k .753±.033• .717±.057• .708±.061• .639±.048 .688±.064• .688±.061• .714±.059• .634±.049
tmc2007 .404±.107• .434±.098• .433±.098• .253±.089 .410±.101• .420±.101• .434±.098• .250±.088
rcv1-s2 .476±.175• .878±.039• .800±.120• .431±.135• .517±.080• .643±.086• .774±.169• .422±.139
rcv1-s3 .474±.150• .861±.064• .738±.230• .440±.139• .449±.094• .640±.029• .796±.160• .430±.141
rcv1-s4 .533±.123• .539±.137• .742±.067• .401±.131• .507±.029• .584±.040• .768±.091• .388±.137
scene .691±.036• .788±.019• .779±.025• .270±.026 .749±.031• .349±.027• .764±.019• .268±.029
VOC2007 .595±.000• - .322±.035• .523±.015• .621±.025• .201±.011• .527±.009• .106±.007

Coverage↓

Corel16k .480±.041• .407±.062• .390±.060• .360±.036 .363±.042 .392±.059• .396±.065• .358±.033
tmc2007 .333±.018• .324±.029• .268±.028• .170±.009• .217±.026• .307±.022• .344±.023• .154±.008
rcv1-s2 .295±.044• .428±.057• .271±.078• .245±.095 .204±.017 .285±.047• .297±.045• .238±.095
rcv1-s3 .292±.054• .430±.048• .246±.036• .234±.097 .217±.064 .282±.040• .321±.049• .232±.086
rcv1-s4 .322±.049• .348±.084• .232±.040• .206±.090 .170±.021◦ .256±.050• .299±.047• .203±.087
scene .355±.024• .401±.022• .330±.024• .093±.007• .181±.011• .117±.010• .369±.017• .091±.008
VOC2007 .427±.025• - .098±.010• .208±.015• .316±.029• .094±.007• .208±.011• .067±.009

Ranking Loss↓

Corel16k .382±.036• .312±.073• .294±.067• .265±.035 .267±.046 .298±.067• .305±.073• .259±.035
tmc2007 .194±.040• .188±.054• .152±.049• .076±.021• .119±.044• .172±.047• .197±.050• .067±.021
rcv1-s2 .205±.064• .344±.028• .198±.051• .165±.081• .132±.007 .207±.031• .214±.027• .158±.082
rcv1-s3 .209±.070• .351±.027• .181±.024 .166±.083 .165±.031 .209±.021• .243±.040• .164±.074
rcv1-s4 .252±.071• .240±.115• .181±.019• .151±.073 .117±.009◦ .197±.028• .241±.026• .149±.070
scene .407±.031• .463±.025• .377±.028• .094±.009 .202±.012• .123±.012• .420±.019• .092±.010
VOC2007 .361±.022• - .064±.008• .166±.013• .252±.026• .058±.005• .162±.010• .032±.006

Average Precision↑

Corel16k .376±.028• .422±.055• .436±.057• .484±.037 .457±.051• .444±.054• .424±.055• .491±.038
tmc2007 .581±.068• .553±.070• .587±.073• .771±.059 .626±.074• .595±.071• .554±.069• .781±.059
rcv1-s2 .578±.099 .340±.019• .464±.030• .646±.111• .624±.024• .533±.057• .479±.074• .656±.115
rcv1-s3 .582±.095• .345±.033• .497±.099• .637±.110 .631±.022 .526±.023• .444±.076• .645±.108
rcv1-s4 .538±.071• .532±.110• .503±.032• .677±.116• .656±.018• .561±.037• .461±.051• .686±.118
scene .519±.024• .443±.018• .486±.024• .838±.015 .590±.018• .791±.017• .473±.016• .840±.016
VOC2007 .399±.012• - .756±.023• .557±.018• .458±.019• .822±.009• .566±.013• .902±.006

learning process. Furthermore, CTL demonstrates signifi-
cant improvement compared to L̄BCE and L̄MAE, which
validates the feasibility of our analysis to improve the risk-
consistent estimator.

Effect of CTL. Fig. 1 describes the curves of average
precision for CTL, L̄′ (i.e., CTL without the confidence trun-
cated threshold λ), L̄BCE and L̄MAE across 200 epochs. As
observed in Fig. 1, the curve of L̄MAE is inferior than that
of L̄BCE and CTL, which supports the analysis in Section 4
that L̄MAE remains stable during the learning process but
exhibits a lower convergence rate [16], [45]. This finding
confirms that choosing an upper bounded of L̄MAE as
the optimization objective can enhance convergence rate.
Furthermore, we notice fluctuations in the curve of L̄′
during the learning process, especially in the rcv1-s3 dataset.
This fluctuation stems from the inconsistent predictions for
non-CLs, where L̄′ encourages assigning high-confidence
predictions of the same label as an irrelevant label and a
relevant label for an instance, which leads to an unstable

learning process and challenging convergence. In contrast,
the curve of CTL exhibits a stable learning process, which
indicates that a confidence truncated threshold indeed pre-
vents fluctuations, thus improving gradient updates to con-
verge stably during the learning process.

Ablation Studies. To validate the contributions of two
main strategies for CTL, we compare CTL with three vari-
ants: (1) CTL w/o upper bound: This variant employs L̄MAE

with the confidence truncated threshold λ to learn a classi-
fier, i.e., using the equation 2K−|Ȳ |−1

2K−2

∑K
y=1,y /∈Ȳ (1−fy(x))+

2K−|Ȳ |−1−1
2K−2

∑K
y=1,y /∈Ȳ εy,λfy(x)+ 2K−|Ȳ |−1

2K−2

∑K
y=1,y∈Ȳ fy(x)

to learn; (2) CTL w/o λ: This variant removes the confidence
truncated threshold λ from CTL, i.e., using only L̄′ for learn-
ing; (3) CTL w/o upper bound & λ: This variant indicates CTL
without the strategies of upper bound and the confidence
truncated threshold λ, which employs L̄MAE for training.
Table 3 displays four criteria for these three variants and
CTL across 7 datasets. As can be seen from Table 3, variant
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Fig. 1. Average precision on various datasets. Dark colors represent the mean testing results, while light colors correspond to the std.

TABLE 3
Ablation studies. The best results (mean±std) for each dataset are shown in boldface.

Datasets Corel16k tmc2007 rcv1-s2 rcv1-s3 rcv1-s4 scene VOC2007

One Error↓

CTL .634±.049 .250±.088 .422±.139 .430±.141 .388±.137 .268±.029 .106±.007
CTL w/o upper bound .769±.066 .702±.061 .834±.173 .843±.161 .827±.142 .835±.021 .595±.000
CTL w/o λ .652±.039 .281±.076 .490±.170 .472±.130 .469±.074 .282±.024 .254±.009
CTL w/o upper bound & λ .714±.059 .434±.098 .774±.169 .796±.160 .768±.091 .764±.019 .527±.009

Coverage↓

CTL .358±.033 .154±.008 .238±.095 .232±.086 .203±.087 .091±.008 .067±.009
CTL w/o upper bound .399±.052 .358±.019 .312±.028 .326±.029 .301±.043 .374±.017 .369±.094
CTL w/o λ .370±.030 .190±.009 .233±.062 .230±.061 .213±.054 .095±.007 .133±.015
CTL w/o upper bound & λ .396±.065 .344±.023 .297±.045 .321±.049 .299±.047 .369±.017 .208±.011

Ranking Loss↓

CTL .259±.035 .067±.021 .158±.082 .164±.074 .149±.070 .092±.010 .032±.006
CTL w/o upper bound .302±.056 .211±.046 .234±.009 .253±.020 .245±.022 .431±.017 .306±.085
CTL w/o λ .274±.028 .089±.017 .157±.050 .162±.048 .158±.038 .098±.008 .087±.011
CTL w/o upper bound & λ .305±.073 .197±.050 .214±.027 .243±.040 .241±.026 .420±.019 .162±.010

Average Precision↑

CTL .491±.038 .781±.059 .656±.115 .645±.108 .686±.118 .840±.016 .902±.006
CTL w/o upper bound .404±.051 .497±.063 .414±.055 .394±.060 .411±.057 .441±.013 .440±.050
CTL w/o λ .471±.031 .739±.047 .627±.099 .630±.083 .638±.063 .832±.013 .821±.015
CTL w/o upper bound & λ .424±.055 .554±.069 .479±.074 .444±.076 .461±.051 .473±.016 .566±.013

(1) is inferior to variant (3) on almost all cases, which
presents that the confidence truncated threshold strategy is
not suitable for L̄MAE and even leads to negative effects.
This is because L̄MAE does not struggle in the trouble
of infinite gradients, and applying a confidence truncated
threshold strategy will affect its performance. On the other
hand, variant (2) surpasses variant (3) on all datasets, which
proves that optimizing an upper bound of L̄MAE benefits
gradient updates. Moreover, CTL outperforms variant (2)
on almost all datasets, which demonstrates that the confi-
dence truncated threshold strategy can prevent an unstable
convergence process in variant (2) (L̄′). In summary, these
two strategies enable CTL to benefit from gradient updates
and improve risk-consistent estimator.

Performance of CTL with Different Number of CLs.

Additionally, we explore the performance impact when the
size of the complementary label set s is fixed for each
instance, with CLs randomly sampled from Y − Y . We
conduct experiments with varying values of s for each
instance to investigate how the number of CLs influences
the performance of approaches. Table 4 presents the results
of four criteria for various approaches on the rcv1-s2 and
VOC2007 datasets when s ∈ {2, 3}. Meanwhile, Fig. 2
illustrates the average precision of different approaches across
three datasets — rcv1-s2, rcv1-s3, and rcv1-s4 — ranging
from s = 2 to s = 8. The experimental results in Table 4
and Fig. 2 reveal that the performance of the CTL approach
consistently improves as the number of CLs per instance
increases. Specifically, when comparing the results for s = 2
and s = 3 on the rcv1-s2 and VOC2007 datasets, the



9

TABLE 4
Experimental results (mean±std) on the training data with a fixed number of CLs. The best performance of each dataset is shown in boldface,

where •/◦ denotes whether CTL is superior/inferior to baselines with pairwise t-test (at 0.05 significance level).

CLs Datasets CCMN L-UW L̄BCE L̄MAE CTL

One Error↓

s=2
rcv1-s2 .611±.126• .690±.050• .676±.049• .681±.069• .579±.164

VOC2007 .718±.172• .924±.010• .595±.000• .573±.036• .449±.111

s=3
rcv1-s2 .597±.167• .713±.059• .624±.035• .743±.073• .500±.187

VOC2007 .596±.002• .916±.010• .397±.077• .518±.018• .252±.081

Coverage↓

s=2
rcv1-s2 .390±.030• .325±.020 .363±.054• .338±.044• .316±.088

VOC2007 .428±.025• .519±.035• .365±.003• .268±.011 .272±.086

s=3
rcv1-s2 .375±.037• .301±.033 .324±.046• .302±.046 .298±.124

VOC2007 .453±.032• .509±.034• .205±.057 .227±.019• .202±.027

Ranking Loss↓

s=2
rcv1-s2 .304±.050• .235±.015 .285±.039• .243±.026• .232±.079

VOC2007 .359±.027• .475±.036• .296±.002• .214±.011 .216±.081

s=3
rcv1-s2 .290±.052• .222±.022 .246±.031• .222±.031 .218±.111

VOC2007 .381±.029• .464±.035• .154±.049 .177±.017• .148±.026

Average Precision↑

s=2
rcv1-s2 .481±.081• .489±.029• .458±.049• .488±.028• .536±.118

VOC2007 .355±.058• .208±.017• .433±.000• .510±.027• .587±.116

s=3
rcv1-s2 .483±.090• .483±.020• .505±.034• .472±.022• .582±.154

VOC2007 .390±.018• .216±.017• .641±.078• .561±.020• .755±.061
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Fig. 2. Average precision on various datasets with different number of CLs. Dark colors represent the mean testing results, while light colors
correspond to the std.

outcomes for s = 3 outperform those for s = 2 across
all criteria, with notable improvements in metrics such as
coverage, ranking loss, and average precision. This indicates
that a greater number of CLs per instance can provide
more supervision information for learning, thus boosting
the model’s performance. The representation in Fig. 2 fur-
ther corroborates these findings, showing a clear upward
trend in CTL’s performance as s increases. The analysis
underscores the importance of considering the number of
CLs in MLCLL algorithms and highlights CTL as a robust
approach that effectively utilizes more label information
to achieve improved learning outcomes. Furthermore, CTL

achieves promising performance against other baselines,
illustrating the effectiveness and flexibility of CTL as it can
adapt to varying definitions of s.

Effect of Various λ on CTL. Here, we investigate the
effect of various confidence truncated thresholds λ on CTL
performance. Based on the analysis in Section 4, where a
large threshold is deemed meaningless, we select λ from
the set {0.1, 0.3, 0.5, 0.6}. The results presented in Table 5.2
indicate that CTL achieves optimal performance when λ =
0.3, outperforming other threshold values in most cases.
This optimal threshold enables average precision to peak at
λ = 0.3, indicating that this threshold enhances the model’s
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TABLE 5
Results with various λ. The best performance for each dataset is

shown in boldface.

λ 0.1 0.3 0.5 0.6

One Error↓

Corel16k .638±.049 .634±.049 .627±.054 .629±.057
tmc2007 .252±.086 .250±.088 .258±.096 .268±.098
rcv1-s4 .397±.132 .388±.137 .396±.103 .402±.079
scene .268±.028 .268±.029 .267±.029 .270±.026
VOC2007 .118±.006 .106±.007 .104±.004 .110±.006

Coverage↓

Corel16k .356±.033 .358±.033 .366±.034 .377±.033
tmc2007 .168±.009 .154±.008 .183±.010 .194±.005
rcv1-s4 .209±.088 .203±.087 .201±.072 .209±.062
scene .092±.007 .091±.008 .093±.008 .095±.007
VOC2007 .077±.006 .067±.009 .072±.000 .074±.001

Ranking Loss↓

Corel16k .259±.034 .259±.035 .263±.034 .274±.033
tmc2007 .075±.022 .067±.021 .083±.023 .089±.021
rcv1-s4 .154±.070 .149±.070 .146±.054 .152±.045
scene .094±.009 .092±.010 .094±.010 .096±.009
VOC2007 .040±.004 .032±.006 .036±.000 .038±.002

Average Precision↑

Corel16k .486±.037 .491±.038 .493±.041 .486±.041
tmc2007 .771±.059 .781±.059 .761±.064 .746±.064
rcv1-s4 .678±.115 .686±.118 .684±.090 .676±.075
scene .839±.015 .840±.016 .839±.016 .836±.015
VOC2007 .888±.003 .902±.006 .898±.003 .894±.003

precision in identifying instances with high confidence. The
consistency of this finding across diverse datasets, such as
Corel16k, tmc2007, rcv1-s4, scene, and VOC2007, suggests
that the choice of λ = 0.3 generalizes well to diverse data
distributions. This robustness emphasizes the importance of
selecting an appropriate λ value that balances the trade-
off between discarding overly confident predictions and
retaining valuable information for learning. The consistently
superior performance at λ = 0.3 in most cases solidifies
our decision to set λ to 0.3 for all experiments. This choice
ensures that CTL operates at its peak, providing the best
predictions possible.

Execution Time. In Table 6, we present the running
time of each approach on the six datasets. Shorter execution
times generally indicate a lower computational complexity
of the approach. It can be observed from Table 6 that the
execution times of CTL exhibit slightly higher running times
than some baselines, such as L-UW and GDF, but the dif-
ferences remain small. Specifically, CTL shows marginally
longer times in the tmc2007 dataset (7.73 × 102 seconds
versus L-UW’s 7.16 × 102 seconds), the relative difference
remains within 8% — a reasonable trade-off considering the
significant performance improvements shown in Table 2. In
particular, the absolute time difference (57 seconds) is neg-
ligible for real-world applications that prioritize model per-
formance. This demonstrates that CTL achieves a favorable
balance between computational efficiency and effectiveness.

TABLE 6
The running time (in 102 seconds) of each approach.

Datasets CCMN L-UW MAE GDF L̄BCE L̄MAE CTL

Corel16k 4.70 4.05 4.22 4.13 4.66 4.35 4.31
tmc2007 8.63 7.16 7.45 7.34 7.55 7.43 7.73
rcv1-s2 3.47 3.03 3.13 3.01 2.96 2.95 3.12
rcv1-s3 4.36 3.10 3.24 3.05 3.00 2.96 3.15
rcv1-s4 3.63 3.13 3.34 3.13 3.04 3.04 3.21
scene 2.82 2.49 2.56 2.46 2.36 2.39 2.45

6 CONCLUSION

In this paper, we propose a novel problem setting, called
ML-MCL, which expands the MLCLL problem to learn with
multiple CLs, while facing greater challenges due to the
uncertain number of CLs. To solve this problem, we theoret-
ically derive a risk-consistent estimator with an estimation
error bound at O(1/

√
n) convergence rate by analyzing the

process of generating multiple CLs. Although our risk esti-
mator does not depend on specific models or loss functions,
the risk estimator may produce unbounded gradients when
using certain loss functions, which can lead to an unstable
learning process and challenging convergence. Therefore,
we design CTL to improve the risk-consistent estimator to
prevent the above issues. Extensive experiments validate the
effectiveness of the proposed approaches. It is noteworthy
that the effectiveness of ML-MCL heavily depends on the
quality of CLs. Errors in CLs could distort the estimated risk,
resulting in a less accurate classifier compared to a scenario
without such errors. Addressing this issue effectively would
require a comprehensive solution, encompassing an alterna-
tive data generation process and a tailored loss function,
which is beyond the scope of our current study. Therefore,
we intend to tackle these error-related challenges in our
future work.
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APPENDIX A
THE PROOF OF THEOREM 1
Theorem 1. p̄(x, Ȳ ) is a valid probability distribution, which satisfies non-negativity and Ep̄(x,Ȳ )[1] = 1.

Proof. Let Ȳj := {Ȳ |Ȳ ∈ Ȳ, |Ȳ | = j} be all possible sets with a size of j. To maintain the validity of the problem setting, Y
cannot be ∅ or Y . So, let Y ′ = {2Y − ∅ − Y}, and we have

Ep̄(x,Ȳ )[1] =

∫
X

∫
Ȳ
p̄(x, Ȳ )dxdȲ

=

∫
X

∑
Ȳ ∈Ȳ

p̄(x, Ȳ )dx

=

∫
X

∑
Ȳ ∈Ȳ

K−1∑
j=1

p(s = j)p̄(x, Ȳ |s = j)dx

=

∫
X

∑
Ȳ ∈Ȳ

K−|Y |∑
j=1

∑
Y ∈Y′,Y ∩Ȳ=∅

p(x, Y )

CjK−|Y |
p(s = j)dx

=

∫
X

∑
Y ∈Y′

K−|Y |∑
j=1

∑
Ȳ ∈Ȳj ,Y ∩Ȳ=∅

p(x, Y )

CjK−|Y |
p(s = j)dx

(
∵ Ȳj := {Ȳ |Ȳ ∈ Ȳ, |Ȳ | = j}

)

=

∫
X

∑
Y ∈Y′

K−|Y |∑
j=1

p(x, Y )p(s = j)dx

=

∫
X

∫
Y′
p(x, Y )dxdY

= 1,

which concludes the proof of Theorem 1.

APPENDIX B
THE PROOF OF LEMMA 2
Lemma 2. Let Ȳj = {Ȳ |Ȳ ∈ Ȳ, |Ȳ | = j}. With Eq. (2),

p(x, Y ) =
1

2K − 2

∑
Ȳ ∈Ȳj ,Y ∩Ȳ=∅

p̄(x, Ȳ |s = j).

Proof. With Eq. (2), we have ∑
Ȳ ∈Ȳj ,Y ∩Ȳ=∅

p̄
(
x, Ȳ |s = j

)
=

∑
Ȳ ∈Ȳj ,Y ∩Ȳ=∅

∑
Y ∈Y′,Y ∩Ȳ=∅

1

CjK−|Y |
p (x, Y )

=
∑
Y ∈Y′

∑
Ȳ ∈Ȳj ,Y ∩Ȳ=∅

1

CjK−|Y |
p (x, Y )

=
∑
Y ∈Y′

p (x, Y )
(
∵ |Y ′| = 2K − 2

)
=
(

2K − 2
)
p (x, Y ) .

Hence, we can get p(x, Y ) = 1
2K−2

∑
Ȳ ∈Ȳj ,Y ∩Ȳ=∅ p̄(x, Ȳ |s = j).

APPENDIX C
THE PROOF OF THEOREM 3
Theorem 3. Under Lemma 2, R(f) = R̄(f) based on the definitions of p̄(x, Ȳ ) and R(f). R̄(f) is expressed as:

R̄(f) =
K−1∑
j=1

p(s = j)R̄j(f),

where R̄j(f) = Ep̄(x,Ȳ |s=j)
[
L̄j(f(x), Ȳ )

]
and L̄j(f(x), Ȳ ) = 2K−j−1

2K−2

∑K
y=1,y /∈Ȳ `y(x) + 2K−j−1−1

2K−2

∑K
y=1,y /∈Ȳ

¯̀
y(x) +

2K−j−1
2K−2

∑K
y=1,y∈Ȳ

¯̀
y(x).



14

Proof. According to the definition of R(f), we have

R (f) = Ep(x,Y ) [L(f(x), Y )] =

K−|Ȳ |∑
j=1

p (s = j)Ep(x,Y |s=j) [L(f(x), Y )] .

For Ep(x,Y |s=j) [L(f(x), Y )], we can obtain

Ep(x,Y |s=j) [L(f(x), Y )] = Ep(x|s=j)Ep(Y |x,s=j) [L(f(x), Y )]

= Ep(x|s=j)

[ ∑
Y ∈Y′

p (Y |x, s = j)L(f(x), Y )

]

= Ep(x|s=j)

 ∑
Y ∈Y′

K−|Y |∑
j=1

p (Y |x, s = j) p (s = j)L(f(x), Y )


= Ep(x|s=j)

 ∑
Y ∈Y′

1

2K − 2

∑
Ȳ ∈Ȳj ,Y ∩Ȳ=∅

p
(
Ȳ |x, s = j

)
L(f(x), Y )


= Ep(x|s=j)Ep(Ȳ |x,s=j)

 ∑
Y ∈Y′,Y ∩Ȳ=∅

1

2K − 2
L(f(x), Y )


= Ep̄(x,Ȳ |s=j)

 ∑
Y ∈Y′,Y ∩Ȳ=∅

1

2K − 2
L(f(x), Y )


= Ep̄(x,Ȳ |s=j)

[
L̄j(f(x), Ȳ )

]
= R̄j(f).

The fourth equality above is derived from Lemma 2. The specific reasoning is as follows:

p(x, Y ) =

K−|Y |∑
j=1

p (x, Y |s = j) p (s = j) =
1

2K − 2

∑
Ȳ ∈Ȳj ,Y ∩Ȳ=∅

p̄
(
x, Ȳ |s = j

)

⇒
K−|Y |∑
j=1

p(s = j)p(x|s = j)p(Y |x, s = j) =
1

2K − 2

∑
Ȳ ∈Ȳj ,Y ∩Ȳ=∅

p(Ȳ |x, s = j)p(x|s = j).

Since the generation of s is independent of x, so p (x|s = j) = p (x). Then, we have

K−|Y |∑
j=1

p (Y |x, s = j) p (s = j) =
1

2K − 2

∑
Ȳ ∈Ȳj ,Y ∩Ȳ=∅

p
(
Ȳ |x, s = j

)
.

According to the definition of Eq. (2), p̄
(
x, Ȳ |s = j

)
= 0 for each j > K − |Y |, we have

R̄(f) =
K−1∑
j=1

p(s = j)R̄j(f) =

K−|Y |∑
j=1

p(s = j)R̄j(f) = R(f).

Finally, let L̄j(f(x), Ȳ ) = 1
2K−2

∑
Y ∈Y′,Y ∩Ȳ=∅ L(f(x), Y ), we can obtain

L̄j(f(x), Ȳ ) =
1

2K − 2

∑
Y ∈Y′,Y ∩Ȳ=∅

L(f(x), Y )

=
1

2K − 2

∑
Y ∈Y′,Y ∩Ȳ=∅


K∑

y=1,y∈Y
`y(x) +

K∑
y=1,y /∈Y

¯̀
y(x)


=

1

2K − 2


K∑

y=1,y /∈Ȳ

∑
Y ∈Y′,y∈Y

`y(x) +
K∑

y=1,y /∈Ȳ

∑
Y ∈Y′,y /∈Y

¯̀
y(x) +

K∑
y=1,y∈Ȳ

∑
Y ∈Y′,y /∈Y

¯̀
y(x)


=

1

2K − 2


K∑

y=1,y /∈Ȳ

2K−j−1`y(x) +
K∑

y=1,y /∈Ȳ

(
2K−j−1 − 1

)
¯̀
y(x) +

K∑
y=1,y∈Ȳ

(
2K−j − 1

)
¯̀
y(x)


=

2K−j−1

2K − 2

K∑
y=1,y /∈Ȳ

`y(x) +
2K−j−1 − 1

2K − 2

K∑
y=1,y /∈Ȳ

¯̀
y(x) +

2K−j − 1

2K − 2

K∑
y=1,y∈Ȳ

¯̀
y(x).
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APPENDIX D
THE PROOF OF THEOREM 4
Based on the definitions of expected risk and empirical risk, i.e.,

R̄(f) =
K−1∑
j=1

p(s = j)R̄j(f) =
K−1∑
j=1

p(s = j)Ep̄(x,Ȳ |s=j)
[
L̄j(f(x), Ȳ )

]
,

R̄n(f) =
K−1∑
j=1

p(s = j)R̄nj (f) =
K−1∑
j=1

p(s = j)

nj

nj∑
i=1

L̄j(f(xi), Ȳi),

we can deduce the following lemma.

Lemma 5. The inequality holds: R(fn)−R(f∗) ≤ 2
∑K−1
j=1 p(s = j) supf∈F

∣∣∣R̄nj (f)− R̄j(f)
∣∣∣.

Proof. Intuitively, we can obtain

R(fn)−R(f∗) = R̄(fn)− R̄(f∗)

=
[
R̄(fn)− R̄n(f∗)

]
+
[
R̄n(fn)− R̄n(f∗)

]
+
[
R̄n(f∗)− R̄(f∗)

]
≤ R̄(fn)− R̄n(fn) + R̄n(f∗)− R̄(f∗)

(
∵ R̄n(fn)− R̄n(f∗) ≤ 0

)
= 2 sup

f∈F

∣∣R̄n(f)− R̄(f)
∣∣

= 2 sup
f∈F

∣∣∣∣∣∣
K−1∑
j=1

p(s = j)R̄nj (f)−
K−1∑
j=1

p(s = j)R̄j(f)

∣∣∣∣∣∣
≤ 2

K−1∑
j=1

p(s = j) sup
f∈F

∣∣R̄nj (f)− R̄j(f)
∣∣ .

Next, we will employ Rademacher Complexity to bound supf∈F

∣∣∣R̄nj (f)− R̄j(f)
∣∣∣, as demonstrated below.

Lemma 6. Let Mj = supx∈X ,f∈F L̄j(f(x), Ȳ ), and Hj =
{
h : (x, Ȳ ) ∈ (X × Ȳj) 7→ L̄j(f(x), Ȳ )|f ∈ F

}
is a class of

measurable functions. For all j ∈ {1, 2, . . . ,K − 1} and any δ > 0, with a probability at least 1− δ,

sup
f∈F

∣∣R̄nj (f)− R̄j(f)
∣∣ ≤ 2Rnj (Hj) +

Mj

2

√
log 2/δ

2nj
,

where Rnj
(Hj) = Ex,Ȳ ,σ

[
supf∈F

1
nj

∑nj

i=1 σih(xi, Ȳi)
]

represents the expected Rademacher Complexity of Hj . Here, σ =

{σ1, σ2, . . . , σnj} is a vector consisting of nj Rademacher variables, taking values from {−1,+1} with even probabilities.

Proof. We first consider the single direction supf∈F

(
R̄nj (f)− R̄j(f)

)
with a probability at least 1 − δ

2 . Due to Mj being

an upper bound for L̄j , the change in supf∈F

(
R̄nj (f)− R̄j(f)

)
is no greater than Mj

2nj
when we use an arbitrary instance

(x′i, Ȳ
′
i ) to replace an instance (xi, Ȳi) belonging to D̄. Based on McDiarmid’s inequality [46], for any δ > 0, with a

probability at least 1− δ
2 ,

sup
f∈F

(
R̄nj (f)− R̄j(f)

)
≤ E

[
sup
f∈F

(
R̄nj (f)− R̄j(f)

)]
+
Mj

2

√
log 2/δ

2nj
.

By symmetrization [47], we have

E

[
sup
f∈F

(
R̄nj (f)− R̄j(f)

)]
≤ 2Rnj

(Hj).

Subsequently, we need to establish a bound of Rnj (Hj) to get the bound of R(fn)−R(f∗).
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Lemma 7. Assuming `y(x) and ¯̀
y(x) are ρ+-Lipschitz and ρ−-Lipschitz with respect to f(x) for any y ∈ Y . Then, for all

j ∈ {1, 2, . . . ,K − 1}, we have

Rnj (Hj) ≤
√

2K

(
2K−j−1

2K−2
ρ+ +

3 · 2K−j−1

2K−2
ρ−
) K∑
y=1

Rnj (Gy) .

Proof. Initially, let ` ◦ F and ¯̀◦ F refer to {` ◦ F|f ∈ F} and {¯̀◦ F|f ∈ F}, respectively. We can then employ the
Rademacher vector contraction inequality [48] to derive the following results:

Rnj
(Hj) = Ep(x,Ȳ |s=j)Eσ

[
sup
h∈Hj

1

nj

nj∑
i=1

σih(xi, Ȳi)

]

= Ep(x,Ȳ |s=j)Eσ

[
sup
f∈F

1

nj

nj∑
i=1

σiL̄j(xi, Ȳi)
]

= Ep(x,Ȳ |s=j)Eσ

sup
f∈F

1

nj

nj∑
i=1

σi


K∑

y=1,y /∈Ȳi

2K−j−1

2K − 2
`y(xi) +

K∑
y=1,y /∈Ȳi

2K−j−1 − 1

2K − 2
¯̀
y(xi)

+
K∑

y=1,y∈Ȳi

2K−j − 1

2K − 2
¯̀
y(xi)




≤ Ep(x,Ȳ |s=j)Eσ

sup
f∈F

1

nj

nj∑
i=1

2K−j−1

2K − 2
σi

K∑
y=1,y /∈Ȳi

`y(xi)


+ Ep(x,Ȳ |s=j)Eσ

sup
f∈F

1

nj

nj∑
i=1

2K−j−1 − 1

2K − 2
σi

K∑
y=1,y /∈Ȳi

¯̀
y(xi)


+ Ep(x,Ȳ |s=j)Eσ

sup
f∈F

1

nj

nj∑
i=1

2K−j − 1

2K − 2
σi

K∑
y=1,y∈Ȳi

¯̀
y(xi)

 .
Here, we introduce random variables αi,y = I[y /∈ Ȳi] for any y ∈ Y , where I[·] represents an indicator function. Then, we
can express

Rnj
(Hj) ≤ Ep(x,Ȳ |s=j)Eσ

sup
f∈F

1

nj

nj∑
i=1

2K−j−1

2K − 2
σi

K∑
y=1

αi,y`y(xi)

+

Ep(x,Ȳ |s=j)Eσ

sup
f∈F

1

nj

nj∑
i=1

2K−j−1 − 1

2K − 2
σi

K∑
y=1

αi,y ¯̀
y(xi)

+

Ep(x,Ȳ |s=j)Eσ

sup
f∈F

1

nj

nj∑
i=1

2K−j − 1

2K − 2
σi

K∑
y=1

(1− αi,y)¯̀
y(xi)


= Ep(x,Ȳ |s=j)Eσ

sup
f∈F

1

nj

nj∑
i=1

2K−j−1

2K − 2
σi

K∑
y=1

1

2
(2αi,y − 1 + 1)`y(xi)

+

Ep(x,Ȳ |s=j)Eσ

sup
f∈F

1

nj

nj∑
i=1

2K−j−1 − 1

2K − 2
σi

K∑
y=1

1

2
(2αi,y − 1 + 1)¯̀

y(xi)

+

Ep(x,Ȳ |s=j)Eσ

sup
f∈F

1

nj

nj∑
i=1

2K−j − 1

2K − 2
σi

K∑
y=1

1

2
(1− 2αi,y + 1)¯̀

y(xi)


= Ep(x,Ȳ |s=j)Eσ

sup
f∈F

1

2nj

nj∑
i=1

2K−j−1

2K − 2


K∑
y=1

(2αi,y − 1)σi`y(xi) +
K∑
y=1

σi`y(xi)


+

Ep(x,Ȳ |s=j)Eσ

sup
f∈F

1

2nj

nj∑
i=1

2K−j−1 − 1

2K − 2


K∑
y=1

(2αi,y − 1)σi ¯̀y(xi) +
K∑
y=1

σi ¯̀y(xi)


+

Ep(x,Ȳ |s=j)Eσ

sup
f∈F

1

2nj

nj∑
i=1

2K−j − 1

2K − 2


K∑
y=1

(1− 2αi,y)σi ¯̀y(xi) +
K∑
y=1

σi ¯̀y(xi)


 .
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As (1− 2αi,y)σi and (2αi,y − 1)σi have the same distribution as σi, we have

Rnj (Hj) ≤ Ep(x,Ȳ |s=j)Eσ

sup
f∈F

1

nj

nj∑
i=1

2K−j−1

2K − 2

K∑
y=1

σi`y(xi)

+

Ep(x,Ȳ |s=j)Eσ

sup
f∈F

1

nj

nj∑
i=1

2K−j−1 − 1

2K − 2

K∑
y=1

σi ¯̀y(xi)

+

Ep(x,Ȳ |s=j)Eσ

sup
f∈F

1

2nj

nj∑
i=1

2K−j − 1

2K − 2

K∑
y=1

σi ¯̀y(xi)


=

2K−j−1

2K − 2
Ep(x,Ȳ |s=j)Eσ

sup
f∈F

1

nj

nj∑
i=1

K∑
y=1

σi`y(xi)

+

3 · 2K−j−1 − 2

2K − 2
Ep(x,Ȳ |s=j)Eσ

sup
f∈F

1

nj

nj∑
i=1

K∑
y=1

σi ¯̀y(xi)


≤ 2K−j−1

2K − 2
ExEσ

sup
f∈F

1

nj

nj∑
i=1

K∑
y=1

σi`y(xi)

+

3 · 2K−j−1 − 2

2K − 2
ExEσ

sup
f∈F

1

nj

nj∑
i=1

K∑
y=1

σi ¯̀y(xi)

 (∵ p(x) = p(x|s = j))

≤ 2K−j−1

2K − 2

K∑
y=1

Rnj
(` ◦ F) +

3 · 2K−j−1 − 2

2K − 2

K∑
y=1

Rnj
(¯̀◦ F)

=
2K−j−1

2K − 2
KRnj

(` ◦ F) +
3 · 2K−j−1 − 2

2K − 2
KRnj

(¯̀◦ F)

≤
√

2Kρ+ 2K−j−1

2K − 2

K∑
y=1

Rnj (Gy) +
√

2Kρ−
3 · 2K−j−1 − 2

2K − 2

K∑
y=1

Rnj (Gy)

=
√

2K

(
2K−j−1

2K − 2
ρ+ +

3 · 2K−j−1 − 2

2K − 2
ρ−
) K∑
y=1

Rnj
(Gy).

According to the above lemmas (Lemma 5, Lemma 6, and Lemma 7), we can establish the estimation error bound. For
any δ > 0, with a probability at least 1− δ, we have

R(fn)−R(f∗) ≤
K−1∑
j=1

p(s = j)

4
√

2K

(
2K−j−1

2K − 2
ρ+ +

3 · 2K−j−1 − 2

2K − 2
ρ−
) K∑
y=1

Rnj (Gy) +Mj

√
log 2/δ

2nj

 .

APPENDIX E
THE DETAILS OF SECTION 4
Here, we derive L̄′(x, Ȳ ) by constructing an upper bound of L̄MAE, whose specific deducing process is shown in the
below:

L̄MAE(f(x), Ȳ ) =
2K−|Ȳ |−1

2K − 2

K∑
y=1,y /∈Ȳ

(1− fy(x)) +
2K−|Ȳ |−1 − 1

2K − 2

K∑
y=1,y /∈Ȳ

fy(x) +
2K−|Ȳ | − 1

2K − 2

K∑
y=1,y∈Ȳ

fy(x)

≤ 1

2K − 2


K∑

y=1,y /∈Ȳ

2K−|Ȳ |−1(1− fy(x)) +
K∑

y=1,y /∈Ȳ

2K−|Ȳ |−1fy(x) +
K∑

y=1,y∈Ȳ

2K−|Ȳ |fy(x)


≤ 1

2K−1


K∑

y=1,y /∈Ȳ

2K−|Ȳ |−1(1− fy(x)) +
K∑

y=1,y /∈Ȳ

2K−|Ȳ |−1fy(x) +
K∑

y=1,y∈Ȳ

2K−|Ȳ |fy(x)


=

K∑
y=1,y /∈Ȳ

2−|Ȳ |(1− fy(x)) +
K∑

y=1,y /∈Ȳ

2−|Ȳ |fy(x) +
K∑

y=1,y∈Ȳ

21−|Ȳ |fy(x)
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≤
K∑

y=1,y /∈Ȳ

(1− 2−|Ȳ |)(1− fy(x)) +
K∑

y=1,y /∈Ȳ

(1− 2−|Ȳ |)fy(x) +
K∑

y=1,y∈Ȳ

21−|Ȳ |fy(x)

≤
K∑

y=1,y /∈Ȳ

e2−|Ȳ |(1− fy(x)) +
K∑

y=1,y /∈Ȳ

e2−|Ȳ |fy(x) +
K∑

y=1,y∈Ȳ

(e21−|Ȳ | − 1)fy(x)

≤
K∑

y=1,y /∈Ȳ

e2−|Ȳ |(1− fy(x)) +
K∑

y=1,y /∈Ȳ

e2−|Ȳ |fy(x) +
K∑

y=1,y∈Ȳ

e21−|Ȳ |
fy(x)

≤ −
K∑

y=1,y /∈Ȳ

e2−|Ȳ | log(fy(x))−
K∑

y=1,y /∈Ȳ

e2−|Ȳ | log(1− fy(x))−
K∑

y=1,y∈Ȳ

e21−|Ȳ |
log(1− fy(x))

= −
K∑

y=1,y /∈Ȳ

e2−|Ȳ | {log(fy(x)) + log(1− fy(x))} −
K∑

y=1,y∈Ȳ

e21−|Ȳ |
log(1− fy(x))

= L̄′(x, Ȳ ).

The sixth inequality above holds because of 1−z ≤ e−z and 1+z ≤ ez . The eighth inequality can hold due to 1−z ≤ − log z.


